VR4Medical/ICI/Library/PackageCache/com.unity.render-pipelines.universal@2b88762731f8/Shaders/Utils/StencilDeferred.hlsl
2025-07-29 13:45:50 +03:00

349 lines
15 KiB
HLSL

#ifndef UNIVERSAL_STENCIL_DEFERRED
#define UNIVERSAL_STENCIL_DEFERRED
#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Core.hlsl"
#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/GBufferInput.hlsl"
#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Shadows.hlsl"
#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Lighting.hlsl"
#include "Packages/com.unity.render-pipelines.core/ShaderLibrary/DynamicScaling.hlsl"
struct Attributes
{
float4 positionOS : POSITION;
uint vertexID : SV_VertexID;
UNITY_VERTEX_INPUT_INSTANCE_ID
};
struct Varyings
{
float4 positionCS : SV_POSITION;
float3 screenUV : TEXCOORD1;
UNITY_VERTEX_INPUT_INSTANCE_ID
UNITY_VERTEX_OUTPUT_STEREO
};
#if defined(_SPOT)
float4 _SpotLightScale;
float4 _SpotLightBias;
float4 _SpotLightGuard;
#endif
Varyings Vertex(Attributes input)
{
Varyings output = (Varyings)0;
UNITY_SETUP_INSTANCE_ID(input);
UNITY_TRANSFER_INSTANCE_ID(input, output);
UNITY_INITIALIZE_VERTEX_OUTPUT_STEREO(output);
float3 positionOS = input.positionOS.xyz;
#if defined(_SPOT)
// Spot lights have an outer angle than can be up to 180 degrees, in which case the shape
// becomes a capped hemisphere. There is no affine transforms to handle the particular cone shape,
// so instead we will adjust the vertices positions in the vertex shader to get the tighest fit.
[flatten] if (any(positionOS.xyz))
{
// The hemisphere becomes the rounded cap of the cone.
positionOS.xyz = _SpotLightBias.xyz + _SpotLightScale.xyz * positionOS.xyz;
positionOS.xyz = normalize(positionOS.xyz) * _SpotLightScale.w;
// Slightly inflate the geometry to fit the analytic cone shape.
// We want the outer rim to be expanded along xy axis only, while the rounded cap is extended along all axis.
positionOS.xyz = (positionOS.xyz - float3(0, 0, _SpotLightGuard.w)) * _SpotLightGuard.xyz + float3(0, 0, _SpotLightGuard.w);
}
#endif
#if defined(_DIRECTIONAL) || defined(_FOG) || defined(_CLEAR_STENCIL_PARTIAL) || (defined(_SSAO_ONLY) && defined(_SCREEN_SPACE_OCCLUSION))
// Full screen render using a large triangle.
output.positionCS = float4(positionOS.xy, UNITY_RAW_FAR_CLIP_VALUE, 1.0); // Force triangle to be on zfar
#elif defined(_SSAO_ONLY) && !defined(_SCREEN_SPACE_OCCLUSION)
// Deferred renderer does not know whether there is a SSAO feature or not at the C# scripting level.
// However, this is known at the shader level because of the shader keyword SSAO feature enables.
// If the keyword was not enabled, discard the SSAO_only pass by rendering the geometry outside the screen.
output.positionCS = float4(positionOS.xy, -2, 1.0); // Force triangle to be discarded
#else
// Light shape geometry is projected as normal.
VertexPositionInputs vertexInput = GetVertexPositionInputs(positionOS.xyz);
output.positionCS = vertexInput.positionCS;
#endif
output.screenUV = output.positionCS.xyw;
#if UNITY_UV_STARTS_AT_TOP
output.screenUV.xy = output.screenUV.xy * float2(0.5, -0.5) + 0.5 * output.screenUV.z;
#else
output.screenUV.xy = output.screenUV.xy * 0.5 + 0.5 * output.screenUV.z;
#endif
output.screenUV.xy = DynamicScalingApplyScaleBias(output.screenUV.xy, float4(_RTHandleScale.xy, 0.0f, 0.0f));
return output;
}
float4x4 _ScreenToWorld[2];
float3 _LightPosWS;
half3 _LightColor;
half4 _LightAttenuation; // .xy are used by DistanceAttenuation - .zw are used by AngleAttenuation *for SpotLights)
half3 _LightDirection; // directional/spotLights support
half4 _LightOcclusionProbInfo;
int _LightFlags;
int _ShadowLightIndex;
uint _LightLayerMask;
int _CookieLightIndex;
half4 FragWhite(Varyings input) : SV_Target
{
return half4(1.0, 1.0, 1.0, 1.0);
}
// This structure is used in StructuredBuffer.
// TODO move some of the properties to half storage (color, attenuation, spotDirection, flag to 16bits, occlusionProbeInfo)
struct PunctualLightData
{
float3 posWS;
float radius2; // squared radius
float4 color;
float4 attenuation; // .xy are used by DistanceAttenuation - .zw are used by AngleAttenuation (for SpotLights)
float3 spotDirection; // spotLights support
int flags; // Light flags (enum kLightFlags and LightFlag in C# code)
float4 occlusionProbeInfo;
uint layerMask; // Optional light layer mask
};
Light UnityLightFromPunctualLightDataAndWorldSpacePosition(PunctualLightData punctualLightData, float3 positionWS, half4 shadowMask, int shadowLightIndex, bool materialFlagReceiveShadowsOff)
{
// Keep in sync with GetAdditionalPerObjectLight in Lighting.hlsl
half4 probesOcclusion = shadowMask;
Light light;
float3 lightVector = punctualLightData.posWS - positionWS.xyz;
float distanceSqr = max(dot(lightVector, lightVector), HALF_MIN);
half3 lightDirection = half3(lightVector * rsqrt(distanceSqr));
// full-float precision required on some platforms
float attenuation = DistanceAttenuation(distanceSqr, punctualLightData.attenuation.xy) * AngleAttenuation(punctualLightData.spotDirection.xyz, lightDirection, punctualLightData.attenuation.zw);
light.direction = lightDirection;
light.color = punctualLightData.color.rgb;
light.distanceAttenuation = attenuation;
[branch] if (materialFlagReceiveShadowsOff)
light.shadowAttenuation = 1.0;
else
{
light.shadowAttenuation = AdditionalLightShadow(shadowLightIndex, positionWS, lightDirection, shadowMask, punctualLightData.occlusionProbeInfo);
}
light.layerMask = punctualLightData.layerMask;
return light;
}
half4 SampleAdditionalLightCookieDeferred(int perObjectLightIndex, float3 samplePositionWS)
{
float4 cookieUvRect = GetLightCookieAtlasUVRect(perObjectLightIndex);
float4x4 worldToLight = GetLightCookieWorldToLightMatrix(perObjectLightIndex);
float2 cookieUv = float2(0,0);
#if defined(_SPOT)
cookieUv = ComputeLightCookieUVSpot(worldToLight, samplePositionWS, cookieUvRect);
#endif
#if defined(_POINT)
cookieUv = ComputeLightCookieUVPoint(worldToLight, samplePositionWS, cookieUvRect);
#endif
#if defined(_DIRECTIONAL)
cookieUv = ComputeLightCookieUVDirectional(worldToLight, samplePositionWS, cookieUvRect, URP_TEXTURE_WRAP_MODE_REPEAT);
#endif
half4 cookieColor = SampleAdditionalLightsCookieAtlasTexture(cookieUv);
cookieColor = half4(IsAdditionalLightsCookieAtlasTextureRGBFormat() ? cookieColor.rgb
: IsAdditionalLightsCookieAtlasTextureAlphaFormat() ? cookieColor.aaa
: cookieColor.rrr, 1);
return cookieColor;
}
Light GetStencilLight(float3 posWS, float2 screen_uv, half4 shadowMask, uint materialFlags)
{
Light unityLight;
bool materialReceiveShadowsOff = (materialFlags & kMaterialFlagReceiveShadowsOff) != 0;
uint lightLayerMask =_LightLayerMask;
#if defined(_DIRECTIONAL)
#if defined(_DEFERRED_MAIN_LIGHT)
unityLight = GetMainLight();
// unity_LightData.z is set per mesh for forward renderer, we cannot cull lights in this fashion with deferred renderer.
unityLight.distanceAttenuation = 1.0;
if (!materialReceiveShadowsOff)
{
#if defined(_MAIN_LIGHT_SHADOWS_SCREEN) && !defined(_SURFACE_TYPE_TRANSPARENT)
float4 shadowCoord = float4(screen_uv, 0.0, 1.0);
#elif defined(MAIN_LIGHT_CALCULATE_SHADOWS)
float4 shadowCoord = TransformWorldToShadowCoord(posWS.xyz);
#else
float4 shadowCoord = float4(0, 0, 0, 0);
#endif
unityLight.shadowAttenuation = MainLightShadow(shadowCoord, posWS.xyz, shadowMask, _MainLightOcclusionProbes);
}
#if defined(_LIGHT_COOKIES)
real3 cookieColor = SampleMainLightCookie(posWS);
unityLight.color *= half3(cookieColor);
#endif
#else
unityLight.direction = _LightDirection;
unityLight.distanceAttenuation = 1.0;
unityLight.shadowAttenuation = 1.0;
unityLight.color = _LightColor.rgb;
unityLight.layerMask = lightLayerMask;
if (!materialReceiveShadowsOff)
{
#if defined(_ADDITIONAL_LIGHT_SHADOWS)
unityLight.shadowAttenuation = AdditionalLightShadow(_ShadowLightIndex, posWS.xyz, _LightDirection, shadowMask, _LightOcclusionProbInfo);
#endif
}
#ifdef _LIGHT_COOKIES
// Enable/disable is done toggling the keyword _LIGHT_COOKIES, but we could do a "static if" instead if required.
// if(_CookieLightIndex >= 0)
{
half3 cookieColor = SampleAdditionalLightCookieDeferred(_CookieLightIndex, posWS).xyz;
unityLight.color *= cookieColor;
}
#endif
#endif
#else
PunctualLightData light;
light.posWS = _LightPosWS;
light.radius2 = 0.0; // only used by tile-lights.
light.color = float4(_LightColor, 0.0);
light.attenuation = _LightAttenuation;
light.spotDirection = _LightDirection;
light.occlusionProbeInfo = _LightOcclusionProbInfo;
light.flags = _LightFlags;
light.layerMask = lightLayerMask;
unityLight = UnityLightFromPunctualLightDataAndWorldSpacePosition(light, posWS.xyz, shadowMask, _ShadowLightIndex, materialReceiveShadowsOff);
#ifdef _LIGHT_COOKIES
// Enable/disable is done toggling the keyword _LIGHT_COOKIES, but we could do a "static if" instead if required.
// if(_CookieLightIndex >= 0)
{
half3 cookieColor = SampleAdditionalLightCookieDeferred(_CookieLightIndex, posWS).xyz;
unityLight.color *= cookieColor;
}
#endif
#endif
return unityLight;
}
half4 DeferredShading(Varyings input) : SV_Target
{
UNITY_SETUP_INSTANCE_ID(input);
UNITY_SETUP_STEREO_EYE_INDEX_POST_VERTEX(input);
float2 screen_uv = (input.screenUV.xy / input.screenUV.z);
#if defined(SUPPORTS_FOVEATED_RENDERING_NON_UNIFORM_RASTER)
float2 undistorted_screen_uv = screen_uv;
UNITY_BRANCH if (_FOVEATED_RENDERING_NON_UNIFORM_RASTER)
{
screen_uv = input.positionCS.xy * _ScreenSize.zw;
}
#endif
GBufferData gBufferData = UnpackGBuffers(input.positionCS.xy);
half3 color = 0.0;
half alpha = 1.0;
#if defined(GBUFFER_FEATURE_SHADOWMASK)
// If both lights and geometry are static, then no realtime lighting to perform for this combination.
[branch] if ((_LightFlags & gBufferData.materialFlags) == kMaterialFlagSubtractiveMixedLighting)
return half4(color, alpha); // Cannot discard because stencil must be updated.
#endif
#if defined(SUPPORTS_FOVEATED_RENDERING_NON_UNIFORM_RASTER)
UNITY_BRANCH if (_FOVEATED_RENDERING_NON_UNIFORM_RASTER)
{
input.positionCS.xy = undistorted_screen_uv * _ScreenSize.xy;
}
#endif
#if defined(USING_STEREO_MATRICES)
int eyeIndex = unity_StereoEyeIndex;
#else
int eyeIndex = 0;
#endif
float4 posWS = mul(_ScreenToWorld[eyeIndex], float4(input.positionCS.xy, gBufferData.depth, 1.0));
posWS.xyz *= rcp(posWS.w);
Light unityLight = GetStencilLight(posWS.xyz, screen_uv, gBufferData.shadowMask, gBufferData.materialFlags);
#if defined(GBUFFER_FEATURE_RENDERING_LAYERS)
[branch] if (!IsMatchingLightLayer(unityLight.layerMask, gBufferData.meshRenderingLayers))
return half4(color, alpha); // Cannot discard because stencil must be updated.
#endif
#if defined(_SCREEN_SPACE_OCCLUSION) && !defined(_SURFACE_TYPE_TRANSPARENT)
AmbientOcclusionFactor aoFactor = GetScreenSpaceAmbientOcclusion(screen_uv);
unityLight.color *= aoFactor.directAmbientOcclusion;
#if defined(_DIRECTIONAL) && defined(_DEFERRED_FIRST_LIGHT)
// What we want is really to apply the mininum occlusion value between the baked occlusion from surfaceDataOcclusion and real-time occlusion from SSAO.
// But we already applied the baked occlusion during gbuffer pass, so we have to cancel it out here.
// We must also avoid divide-by-0 that the reciprocal can generate.
half occlusion = aoFactor.indirectAmbientOcclusion < gBufferData.occlusion ? aoFactor.indirectAmbientOcclusion * rcp(gBufferData.occlusion) : 1.0;
alpha = occlusion;
#endif
#endif
InputData inputData = (InputData)0;
inputData.positionWS = posWS.xyz;
inputData.normalWS = gBufferData.normalWS;
inputData.viewDirectionWS = GetWorldSpaceNormalizeViewDir(posWS.xyz);
#if defined(_LIT)
#if SHADER_API_MOBILE || SHADER_API_SWITCH
// Specular highlights are still silenced by setting specular to 0.0 during gbuffer pass and GPU timing is still reduced.
bool materialSpecularHighlightsOff = false;
#else
bool materialSpecularHighlightsOff = (gBufferData.materialFlags & kMaterialFlagSpecularHighlightsOff);
#endif
BRDFData brdfData = GBufferDataToBRDFData(gBufferData);
color = LightingPhysicallyBased(brdfData, unityLight, inputData.normalWS, inputData.viewDirectionWS, materialSpecularHighlightsOff);
#elif defined(_SIMPLELIT)
SurfaceData surfaceData = GBufferDataToSurfaceData(gBufferData);
half3 attenuatedLightColor = unityLight.color * (unityLight.distanceAttenuation * unityLight.shadowAttenuation);
half3 diffuseColor = LightingLambert(attenuatedLightColor, unityLight.direction, inputData.normalWS);
half smoothness = exp2(10 * surfaceData.smoothness + 1);
half3 specularColor = LightingSpecular(attenuatedLightColor, unityLight.direction, inputData.normalWS, inputData.viewDirectionWS, half4(surfaceData.specular, 1), smoothness);
// TODO: if !defined(_SPECGLOSSMAP) && !defined(_SPECULAR_COLOR), force specularColor to 0 in gbuffer code
color = diffuseColor * surfaceData.albedo + specularColor;
#endif
return half4(color, alpha);
}
half4 FragSSAOOnly(Varyings input) : SV_Target
{
UNITY_SETUP_STEREO_EYE_INDEX_POST_VERTEX(input);
float2 screen_uv = (input.screenUV.xy / input.screenUV.z);
AmbientOcclusionFactor aoFactor = GetScreenSpaceAmbientOcclusion(screen_uv);
half surfaceDataOcclusion = UnpackGBuffers(input.positionCS.xy).occlusion;
// What we want is really to apply the mininum occlusion value between the baked occlusion from surfaceDataOcclusion and real-time occlusion from SSAO.
// But we already applied the baked occlusion during gbuffer pass, so we have to cancel it out here.
// We must also avoid divide-by-0 that the reciprocal can generate.
half occlusion = aoFactor.indirectAmbientOcclusion < surfaceDataOcclusion ? aoFactor.indirectAmbientOcclusion * rcp(surfaceDataOcclusion) : 1.0;
return half4(0.0, 0.0, 0.0, occlusion);
}
#endif //UNIVERSAL_STENCIL_DEFERRED