VR4Medical/ICI/Library/PackageCache/com.unity.render-pipelines.universal@2b88762731f8/Shaders/Utils/ClusterDeferred.hlsl
2025-07-29 13:45:50 +03:00

191 lines
7.3 KiB
HLSL

#ifndef UNIVERSAL_CLUSTER_DEFERRED
#define UNIVERSAL_CLUSTER_DEFERRED
#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Core.hlsl"
#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/GBufferInput.hlsl"
#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Shadows.hlsl"
#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Lighting.hlsl"
#include "Packages/com.unity.render-pipelines.core/ShaderLibrary/DynamicScaling.hlsl"
#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/RealtimeLights.hlsl"
struct Attributes
{
float4 positionOS : POSITION;
uint vertexID : SV_VertexID;
UNITY_VERTEX_INPUT_INSTANCE_ID
};
struct Varyings
{
float4 positionCS : SV_POSITION;
float3 screenUV : TEXCOORD1;
UNITY_VERTEX_INPUT_INSTANCE_ID
UNITY_VERTEX_OUTPUT_STEREO
};
Varyings VertexFullScreen(Attributes input)
{
Varyings output = (Varyings)0;
UNITY_SETUP_INSTANCE_ID(input);
UNITY_TRANSFER_INSTANCE_ID(input, output);
UNITY_INITIALIZE_VERTEX_OUTPUT_STEREO(output);
float3 positionOS = input.positionOS.xyz;
output.positionCS = float4(positionOS.xy, UNITY_RAW_FAR_CLIP_VALUE, 1.0); // Force triangle to be on zfar
output.screenUV = output.positionCS.xyw;
#if UNITY_UV_STARTS_AT_TOP
output.screenUV.xy = output.screenUV.xy * float2(0.5, -0.5) + 0.5 * output.screenUV.z;
#else
output.screenUV.xy = output.screenUV.xy * 0.5 + 0.5 * output.screenUV.z;
#endif
output.screenUV.xy = DynamicScalingApplyScaleBias(output.screenUV.xy, float4(_RTHandleScale.xy, 0.0f, 0.0f));
return output;
}
float4x4 _ScreenToWorld[2];
half3 DeferredLightContribution(Light light, InputData inputData, GBufferData gBufferData)
{
#if defined(_LIGHT_LAYERS)
UNITY_BRANCH if (!IsMatchingLightLayer(light.layerMask, gBufferData.meshRenderingLayers))
return half3(0.0, 0.0, 0.0);
#endif
#if defined(_SIMPLELIT)
{
SurfaceData surfaceData = GBufferDataToSurfaceData(gBufferData);
half3 attenuatedLightColor = light.color * (light.distanceAttenuation * light.shadowAttenuation);
half3 diffuseColor = LightingLambert(attenuatedLightColor, light.direction, inputData.normalWS);
half smoothness = exp2(10 * surfaceData.smoothness + 1);
half3 specularColor = LightingSpecular(attenuatedLightColor, light.direction, inputData.normalWS, inputData.viewDirectionWS, half4(surfaceData.specular, 1), smoothness);
// TODO: if !defined(_SPECGLOSSMAP) && !defined(_SPECULAR_COLOR), force specularColor to 0 in gbuffer code
return half3(diffuseColor * surfaceData.albedo + specularColor);
}
#elif defined(_LIT)
{
#if SHADER_API_MOBILE || SHADER_API_SWITCH
// Specular highlights are still silenced by setting specular to 0.0 during gbuffer pass and GPU timing is still reduced.
bool materialSpecularHighlightsOff = false;
#else
bool materialSpecularHighlightsOff = (gBufferData.materialFlags & kMaterialFlagSpecularHighlightsOff);
#endif
BRDFData brdfData = GBufferDataToBRDFData(gBufferData);
return half3(LightingPhysicallyBased(brdfData, light, inputData.normalWS, inputData.viewDirectionWS, materialSpecularHighlightsOff));
}
#endif
return half3(0.0, 0.0, 0.0);
}
half4 DeferredShadingClustered(Varyings input) : SV_Target
{
UNITY_SETUP_INSTANCE_ID(input);
UNITY_SETUP_STEREO_EYE_INDEX_POST_VERTEX(input);
float2 screen_uv = (input.screenUV.xy / input.screenUV.z);
#if defined(SUPPORTS_FOVEATED_RENDERING_NON_UNIFORM_RASTER)
float2 undistorted_screen_uv = screen_uv;
UNITY_BRANCH if (_FOVEATED_RENDERING_NON_UNIFORM_RASTER)
{
screen_uv = input.positionCS.xy * _ScreenSize.zw;
}
#endif
GBufferData gBufferData = UnpackGBuffers(input.positionCS.xy);
half3 color = 0.0;
half alpha = 1.0;
#if defined(SUPPORTS_FOVEATED_RENDERING_NON_UNIFORM_RASTER)
UNITY_BRANCH if (_FOVEATED_RENDERING_NON_UNIFORM_RASTER)
{
input.positionCS.xy = undistorted_screen_uv * _ScreenSize.xy;
}
#endif
float4 posWS = mul(_ScreenToWorld[SLICE_ARRAY_INDEX], float4(input.positionCS.xy, gBufferData.depth, 1.0));
posWS.xyz *= rcp(posWS.w);
InputData inputData = (InputData)0;
inputData.positionWS = posWS.xyz;
inputData.normalWS = gBufferData.normalWS;
inputData.viewDirectionWS = GetWorldSpaceNormalizeViewDir(posWS.xyz);
inputData.normalizedScreenSpaceUV = GetNormalizedScreenSpaceUV(input.positionCS);
AmbientOcclusionFactor aoFactor = GetScreenSpaceAmbientOcclusion(screen_uv);
#if defined(_SCREEN_SPACE_OCCLUSION)
// What we want is really to apply the minimum occlusion value between the baked occlusion from surfaceDataOcclusion and real-time occlusion from SSAO.
// But we already applied the baked occlusion during gbuffer pass, so we have to cancel it out here.
// We must also avoid divide-by-0 that the reciprocal can generate.
half surfaceDataOcclusion = gBufferData.occlusion;
half occlusion = aoFactor.indirectAmbientOcclusion < surfaceDataOcclusion ? aoFactor.indirectAmbientOcclusion * rcp(surfaceDataOcclusion) : 1.0;
alpha = occlusion;
#endif
// Main light
Light mainLight = GetMainLight();
mainLight.distanceAttenuation = 1.0;
bool materialReceiveShadowsOff = (gBufferData.materialFlags & kMaterialFlagReceiveShadowsOff) != 0;
UNITY_BRANCH if (!materialReceiveShadowsOff)
{
#if defined(_MAIN_LIGHT_SHADOWS_SCREEN) && !defined(_SURFACE_TYPE_TRANSPARENT)
float4 shadowCoord = float4(screen_uv, 0.0, 1.0);
#elif defined(MAIN_LIGHT_CALCULATE_SHADOWS)
float4 shadowCoord = TransformWorldToShadowCoord(posWS.xyz);
#else
float4 shadowCoord = float4(0, 0, 0, 0);
#endif
mainLight.shadowAttenuation = MainLightShadow(shadowCoord, posWS.xyz, gBufferData.shadowMask, _MainLightOcclusionProbes);
}
#if defined(_LIGHT_COOKIES)
half3 cookieColor = SampleMainLightCookie(posWS.xyz);
mainLight.color *= half3(cookieColor);
#endif
#if defined(_SCREEN_SPACE_OCCLUSION)
mainLight.shadowAttenuation *= aoFactor.directAmbientOcclusion;
#endif
color += DeferredLightContribution(mainLight, inputData, gBufferData);
// Additional light loop
// We do additional directional lights last because otherwise FXC complains...
uint pixelLightCount = GetAdditionalLightsCount();
LIGHT_LOOP_BEGIN(pixelLightCount)
Light light = GetAdditionalLight(lightIndex, inputData, gBufferData.shadowMask, aoFactor);
UNITY_BRANCH if (materialReceiveShadowsOff)
{
light.shadowAttenuation = 1.0;
}
color += DeferredLightContribution(light, inputData, gBufferData);
LIGHT_LOOP_END
UNITY_LOOP for (uint lightIndex = 0; lightIndex < min(URP_FP_DIRECTIONAL_LIGHTS_COUNT, MAX_VISIBLE_LIGHTS); lightIndex++)
{
CLUSTER_LIGHT_LOOP_SUBTRACTIVE_LIGHT_CHECK
Light light = GetAdditionalLight(lightIndex, inputData, gBufferData.shadowMask, aoFactor);
UNITY_BRANCH if (materialReceiveShadowsOff)
{
light.shadowAttenuation = 1.0;
}
color += DeferredLightContribution(light, inputData, gBufferData);
}
return half4(color, alpha);
}
#endif //UNIVERSAL_CLUSTER_DEFERRED