/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* Licensed under the Oculus SDK License Agreement (the "License");
* you may not use the Oculus SDK except in compliance with the License,
* which is provided at the time of installation or download, or which
* otherwise accompanies this software in either electronic or hard copy form.
*
* You may obtain a copy of the License at
*
* https://developer.oculus.com/licenses/oculussdk/
*
* Unless required by applicable law or agreed to in writing, the Oculus SDK
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System.Collections;
using System.Collections.Generic;
using System.IO;
using System;
using System.Linq;
using UnityEngine;
using OVRSimpleJSON;
using System.Threading.Tasks;
public enum OVRChunkType
{
JSON = 0x4E4F534A,
BIN = 0x004E4942,
}
public enum OVRTextureFormat
{
NONE,
KTX2,
PNG,
JPEG,
}
///
/// This enum represents a simplified representation on how Texture Filter quality is implemented in Unity.
/// The values set in this enum are NOT random and are directly used by ApplyTextureQuality() and DetectTextureQuality()
/// to get/set the correspondent setup in Unity.
///
public enum OVRTextureQualityFiltering
{
None = -1,
Bilinear = 0,
Trilinear = 1,
Aniso2x = 2,
Aniso4x = 3,
Aniso8x = 4,
Aniso16x = 5,
}
///
/// Struct that contains mesh data loaded from a GLTF (GL Transmission Format file). This includes the mesh object, material of the mesh, mesh attributes, and the morph targets of the mesh.
///
public struct OVRMeshData
{
public Mesh mesh;
public Material material;
public OVRMeshAttributes baseAttributes;
public OVRMeshAttributes[] morphTargets;
}
///
/// Struct that contains material data from a GLTF (GL Transmission Format file) required for creating a Unity material. This includes the shader, texture data, and base color.
///
public struct OVRMaterialData
{
public Shader shader;
public int textureId;
public OVRTextureData texture;
public Color baseColorFactor;
}
///
/// Struct that contains the overall GLTF (GL Transmission Format) scene structure. This includes the root of the scene as a game object as well as all the animation and morph target data for the scene.
///
public struct OVRGLTFScene
{
public GameObject root;
public Dictionary animationNodes;
public Dictionary animationNodeLookup;
public List morphTargetHandlers;
}
///
/// Struct that contains data on a texture loaded from a GLTF (GL Transmission Format file). This includes the raw data of the texture as well as metadata like width, height, format, and uri.
///
public struct OVRTextureData
{
public byte[] data;
public int width;
public int height;
public OVRTextureFormat format;
public TextureFormat transcodedFormat;
public string uri;
}
///
/// Struct that contains the mesh attribute data for each mesh loaded from a GLTF (GL Transmission Format file). This includes the verts, normals, tangets, UVs, colors, and bone weights.
///
public struct OVRMeshAttributes
{
public Vector3[] vertices;
public Vector3[] normals;
public Vector4[] tangents;
public Vector2[] texcoords;
public Color[] colors;
public BoneWeight[] boneWeights;
}
///
/// This is a lightweight [GLTF model](https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html) loader that is guaranteed to work with models loaded from the Meta Quest runtime
/// using OVRPlugin.LoadRenderModel . The loader only accepts GLTF files/data in the [GLB format](https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#glb-file-format-specification).
/// We do not recommended using this class as a general purpose GLTF loader.
///
public class OVRGLTFLoader
{
private const float LoadingMaxTimePerFrame = 1.0f / 70f;
private readonly Func m_deferredStream;
private JSONNode m_jsonData;
private Stream m_glbStream;
private GameObject[] m_Nodes;
private Dictionary m_InputAnimationNodes;
//
private Dictionary m_AnimationLookup;
//
private Dictionary m_morphTargetHandlers;
private Shader m_Shader = Shader.Find("Legacy Shaders/Diffuse");
private Shader m_AlphaBlendShader = Shader.Find("Unlit/Transparent");
private OVRTextureQualityFiltering m_TextureQuality = OVRTextureQualityFiltering.Bilinear; // = Unity default
private float m_TextureMipmapBias = 0.0f; // = shader default
public OVRGLTFScene scene;
public static readonly Vector3 GLTFToUnitySpace = new Vector3(-1, 1, 1);
public static readonly Vector3 GLTFToUnityTangent = new Vector4(-1, 1, 1, -1);
public static readonly Vector4 GLTFToUnitySpace_Rotation = new Vector4(1, -1, -1, 1);
private static Dictionary InputNodeNameMap = new Dictionary
{
{ "button_a", OVRGLTFInputNode.Button_A_X },
{ "button_x", OVRGLTFInputNode.Button_A_X },
{ "button_b", OVRGLTFInputNode.Button_B_Y },
{ "button_y", OVRGLTFInputNode.Button_B_Y },
{ "button_oculus", OVRGLTFInputNode.Button_Oculus_Menu },
{ "trigger_front", OVRGLTFInputNode.Trigger_Front },
{ "trigger_grip", OVRGLTFInputNode.Trigger_Grip },
{ "thumbstick", OVRGLTFInputNode.ThumbStick },
};
public Func textureUriHandler;
private Dictionary m_textures;
private Dictionary m_materials;
private float m_processingNodesStart;
private OVRGLTFAccessor _dataAccessor;
///
/// Creates a new GLTF loader using a file path.
///
/// Path to GLB file
public OVRGLTFLoader(string fileName)
{
m_glbStream = File.Open(fileName, FileMode.Open);
}
///
/// Creates a new GLTF loader using a binary data array.
///
/// GLB byte data
public OVRGLTFLoader(byte[] data)
{
m_glbStream = new MemoryStream(data, 0, data.Length, false, true);
}
///
/// Creates a new GLTF loader with a deferred data stream. This should be used with to allow for async loading of the GLTF model. This can help prevent stalling on complex GLTF models.
///
/// GLB data as a Stream
public OVRGLTFLoader(Func deferredStream)
{
m_deferredStream = deferredStream;
}
///
/// Starts the loading process for the full GLTF file into Unity.
///
/// Load GLTF animations.
/// Load GLTF textures with mip maps.
/// Full GLTF scene
public OVRGLTFScene LoadGLB(bool supportAnimation, bool loadMips = true)
{
var loadGltfCoroutine = LoadGLBCoroutine(supportAnimation, loadMips);
while (loadGltfCoroutine.MoveNext())
{
// process the coroutine synchronously
}
return scene;
}
///
/// Starts the loading process for the full GLTF file into Unity as a coroutine. This can help prevent stalling as loading will be spread out over multiple frames.
///
/// Load GLTF animations
/// Load GLTF textures with mip maps.
/// IEnumerator that can be yielded on.
public IEnumerator LoadGLBCoroutine(bool supportAnimation, bool loadMips = true)
{
scene = new OVRGLTFScene();
m_InputAnimationNodes = new Dictionary();
m_AnimationLookup = new Dictionary();
m_morphTargetHandlers = new Dictionary();
m_textures = new Dictionary();
m_materials = new Dictionary();
// If running in the unity editor avoid a background task
if (Application.isBatchMode)
{
Debug.Log("Batch Mode Single Threaded Loading");
m_jsonData = InitializeGLBLoad();
}
else
{
var task = Task.Run(() => InitializeGLBLoad());
yield return new WaitUntil(() => task.IsCompleted);
m_jsonData = task.Result;
if (task.IsFaulted)
{
Debug.LogException(task.Exception);
}
}
if (m_jsonData == null || !OVRGLTFAccessor.TryCreate(m_jsonData["accessors"], m_jsonData["bufferViews"], m_jsonData["buffers"],
m_glbStream, out _dataAccessor))
{
m_glbStream?.Close();
yield break;
}
var loadGltf = LoadGLTF(supportAnimation, loadMips);
// Run coroutine withut initial frame skip
while (loadGltf.MoveNext())
{
yield return loadGltf.Current;
}
m_glbStream.Close();
if (!m_Nodes.Any())
{
yield break;
}
// Rotate to match unity coordinates
scene.root.transform.Rotate(Vector3.up, 180.0f);
scene.root.SetActive(true);
scene.animationNodes = m_InputAnimationNodes;
scene.animationNodeLookup = m_AnimationLookup;
scene.morphTargetHandlers = m_morphTargetHandlers.Values.ToList();
}
private JSONNode InitializeGLBLoad()
{
if (m_deferredStream != null)
{
m_glbStream = m_deferredStream.Invoke();
}
if (ValidateGLB(m_glbStream))
{
byte[] jsonChunkData = ReadChunk(m_glbStream, OVRChunkType.JSON);
if (jsonChunkData != null)
{
string json = System.Text.Encoding.ASCII.GetString(jsonChunkData);
return JSON.Parse(json);
}
}
return null;
}
///
/// Sets the shader that should be used by the GLTF loader on materials.
///
/// Shader to be used.
public void SetModelShader(Shader shader)
{
m_Shader = shader;
}
///
/// Sets the alpha blending shader that should be used by the GLTF loader on materials.
///
/// Shader to be used.
public void SetModelAlphaBlendShader(Shader shader)
{
m_AlphaBlendShader = shader;
}
///
/// Sets the texture quality for loading all textures in the GLTF model. The default is Bilinear.
/// Once loaded, textures will be read-only on GPU memory.
///
/// The quality setting.
public void SetTextureQualityFiltering(OVRTextureQualityFiltering loadedTexturesQuality)
{
m_TextureQuality = loadedTexturesQuality;
}
///
/// Sets the MipMap bias value for loading all textures in the GLTF model. The default is 0.
/// Only supported when MipMaps are loaded and the provided shader has a property named "_MainTexMMBias"
///
/// The value for bias. Value is clamped between [-1,1]
public void SetMipMapBias(float loadedTexturesMipmapBiasing)
{
m_TextureMipmapBias = Mathf.Clamp(loadedTexturesMipmapBiasing, -1.0f, 1.0f);
}
///
/// Decodes the Texture Quality setting from the input Texture2D properties' values.
///
/// The input Texture2D
/// The enum TextureQualityFiltering representing the quality.
public static OVRTextureQualityFiltering DetectTextureQuality(in Texture2D srcTexture)
{
OVRTextureQualityFiltering quality = OVRTextureQualityFiltering.None;
switch (srcTexture.filterMode)
{
case FilterMode.Point:
quality = OVRTextureQualityFiltering.None;
break;
case FilterMode.Bilinear:
goto default;
case FilterMode.Trilinear:
if (srcTexture.anisoLevel <= 1)
quality = OVRTextureQualityFiltering.Trilinear;
// In theory, aniso supports values between 2-16x, but in reality GPUs and gfx APIs implement
// powers of 2 (values in between have no change)
else if (srcTexture.anisoLevel < 4)
quality = OVRTextureQualityFiltering.Aniso2x;
else if (srcTexture.anisoLevel < 8)
quality = OVRTextureQualityFiltering.Aniso4x;
else if (srcTexture.anisoLevel < 16)
quality = OVRTextureQualityFiltering.Aniso8x;
else
quality = OVRTextureQualityFiltering.Aniso16x;
break;
default:
quality = OVRTextureQualityFiltering.Bilinear;
break;
}
return quality;
}
///
/// Applies the input Texture Quality setting into the ref Texture2D provided as input. Texture2D must not be readonly.
///
/// The quality level to apply
/// The destination Texture2D to apply quality setting to
public static void ApplyTextureQuality(OVRTextureQualityFiltering qualityLevel, ref Texture2D destTexture)
{
if (destTexture == null)
return;
switch (qualityLevel)
{
case OVRTextureQualityFiltering.None:
destTexture.filterMode = FilterMode.Point;
destTexture.anisoLevel = 0;
break;
case OVRTextureQualityFiltering.Bilinear:
destTexture.filterMode = FilterMode.Bilinear;
destTexture.anisoLevel = 0;
break;
case OVRTextureQualityFiltering.Trilinear:
destTexture.filterMode = FilterMode.Trilinear;
destTexture.anisoLevel = 0;
break;
default: // for higher values
destTexture.filterMode = FilterMode.Trilinear;
// In theory, aniso supports values between 2-16x, but in reality GPUs and gfx APIs implement
// powers of 2 (values in between have no change)
// given the enum value, this gives aniso x2 x4 x8 x16
destTexture.anisoLevel = Mathf.FloorToInt(Mathf.Pow(2.0f, (int)qualityLevel - 1));
break;
}
}
///
/// Checks the GLB data stream to check if it is a valid GLTF file.
///
/// Data stream of the GLB file.
/// If the stream is a valid GLTF file.
static public bool ValidateGLB(Stream glbStream)
{
if (glbStream == null)
{
return false;
}
// Read the magic entry and ensure value matches the glTF value
int uint32Size = sizeof(uint);
byte[] buffer = new byte[uint32Size];
glbStream.Read(buffer, 0, uint32Size);
uint magic = BitConverter.ToUInt32(buffer, 0);
if (magic != 0x46546C67)
{
Debug.LogError("Data stream was not a valid glTF format");
return false;
}
// Read glTF version
glbStream.Read(buffer, 0, uint32Size);
uint version = BitConverter.ToUInt32(buffer, 0);
if (version != 2)
{
Debug.LogError("Only glTF 2.0 is supported");
return false;
}
// Read glTF file size
glbStream.Read(buffer, 0, uint32Size);
uint length = BitConverter.ToUInt32(buffer, 0);
if (length != glbStream.Length)
{
Debug.LogError("glTF header length does not match file length");
return false;
}
return true;
}
///
/// Reads a chunk of binary data from the stream that either represents the JSON or BIN part of the GLTF file.
///
/// The binary stream of the GLTF file.
/// Type indicating which part of the GLTF file should be read.
///
public static byte[] ReadChunk(Stream glbStream, OVRChunkType type)
{
uint chunkLength;
if (ValidateChunk(glbStream, type, out chunkLength))
{
byte[] chunkBuffer = new byte[chunkLength];
glbStream.Read(chunkBuffer, 0, (int)chunkLength);
return chunkBuffer;
}
return null;
}
private static bool ValidateChunk(Stream glbStream, OVRChunkType type, out uint chunkLength)
{
int uint32Size = sizeof(uint);
byte[] buffer = new byte[uint32Size];
glbStream.Read(buffer, 0, uint32Size);
chunkLength = BitConverter.ToUInt32(buffer, 0);
glbStream.Read(buffer, 0, uint32Size);
uint chunkType = BitConverter.ToUInt32(buffer, 0);
if (chunkType != (uint)type)
{
Debug.LogError("Read chunk does not match type.");
return false;
}
return true;
}
private IEnumerator LoadGLTF(bool supportAnimation, bool loadMips)
{
if (m_jsonData == null)
{
Debug.LogError("m_jsonData was null");
yield break;
}
var scenes = m_jsonData["scenes"];
if (scenes.Count == 0)
{
Debug.LogError("No valid scenes in this glTF.");
yield break;
}
// Create GameObjects for each node in the model so that they can be referenced during processing
scene.root = new GameObject("GLB Scene Root");
var sceneRootTransform = scene.root.transform;
scene.root.SetActive(false);
var nodes = m_jsonData["nodes"].AsArray;
m_Nodes = new GameObject[nodes.Count];
sceneRootTransform.hierarchyCapacity = nodes.Count;
var i = 0;
foreach (var node in nodes.Values)
{
var go = new GameObject();
go.transform.SetParent(sceneRootTransform, false);
m_Nodes[i++] = go;
}
// Limit loading to just the first scene in the glTF
var mainScene = scenes[0];
var rootNodes = mainScene["nodes"].AsArray;
m_processingNodesStart = Time.realtimeSinceStartup;
// Load all nodes (some models like e.g. laptops use multiple nodes)
foreach (JSONNode rootNode in rootNodes)
{
int rootNodeId = rootNode.AsInt;
var processNode = ProcessNode(nodes, rootNodeId, loadMips, sceneRootTransform);
// Run coroutine without initial frame skip
while (processNode.MoveNext())
{
yield return processNode.Current;
}
}
if (supportAnimation)
{
var processAnimations = ProcessAnimations();
// Run coroutine without initial frame skip
while (processAnimations.MoveNext())
{
yield return processAnimations.Current;
}
}
}
private IEnumerator ProcessNode(JSONArray nodes, int nodeId, bool loadMips, Transform parent)
{
bool hasSkipped = false;
if (Time.realtimeSinceStartup - m_processingNodesStart > LoadingMaxTimePerFrame)
{
m_processingNodesStart = Time.realtimeSinceStartup;
hasSkipped = true;
yield return null;
}
JSONNode node = nodes[nodeId];
var nodeGameObject = m_Nodes[nodeId];
var nodeTransform = nodeGameObject.transform;
var nodeName = node["name"].Value;
nodeTransform.name = nodeName;
nodeTransform.SetParent(parent, false);
// Process the child nodes first
var childNodes = node["children"].AsArray;
if (childNodes.Count > 0)
{
foreach (var child in childNodes.Values)
{
var childId = child.AsInt;
var processNode = ProcessNode(nodes, childId, loadMips, nodeTransform);
// Run coroutine without initial frame skip
while (processNode.MoveNext())
{
yield return processNode.Current;
}
}
}
if (nodeName.StartsWith("batteryIndicator"))
{
nodeGameObject.SetActive(false);
yield break;
}
if (node["mesh"] != null)
{
var meshId = node["mesh"].AsInt;
OVRMeshData meshData = ProcessMesh(m_jsonData["meshes"][meshId], loadMips);
if (node["skin"] != null)
{
var renderer = nodeGameObject.AddComponent();
renderer.sharedMesh = meshData.mesh;
renderer.sharedMaterial = meshData.material;
var skinId = node["skin"].AsInt;
ProcessSkin(m_jsonData["skins"][skinId], renderer);
}
else
{
var filter = nodeGameObject.AddComponent();
filter.sharedMesh = meshData.mesh;
var renderer = nodeGameObject.AddComponent();
renderer.sharedMaterial = meshData.material;
}
if (meshData.morphTargets != null)
{
m_morphTargetHandlers[nodeId] = new OVRGLTFAnimationNodeMorphTargetHandler(meshData);
}
}
var translation = node["translation"].AsArray;
var rotation = node["rotation"].AsArray;
var scale = node["scale"].AsArray;
if (translation.Count > 0 || rotation.Count > 0)
{
var pos = Vector3.zero;
var rot = Quaternion.identity;
if (translation.Count > 0)
{
pos = new Vector3(
translation[0] * GLTFToUnitySpace.x,
translation[1] * GLTFToUnitySpace.y,
translation[2] * GLTFToUnitySpace.z);
}
if (rotation.Count > 0)
{
rot = new Quaternion(
rotation[0] * GLTFToUnitySpace.x * -1.0f,
rotation[1] * GLTFToUnitySpace.y * -1.0f,
rotation[2] * GLTFToUnitySpace.z * -1.0f,
rotation[3]
);
}
nodeTransform.SetPositionAndRotation(pos, rot);
}
if (scale.Count > 0)
{
nodeTransform.localScale = new Vector3(scale[0], scale[1], scale[2]);
// disable any zero-scale gameobjects to reduce drawcalls
nodeTransform.gameObject.SetActive(nodeTransform.gameObject.transform.localScale != Vector3.zero);
}
var delta = Time.realtimeSinceStartup - m_processingNodesStart;
if (!hasSkipped && Time.realtimeSinceStartup - m_processingNodesStart > LoadingMaxTimePerFrame)
{
m_processingNodesStart = Time.realtimeSinceStartup;
yield return null;
}
}
private OVRMeshData ProcessMesh(JSONNode meshNode, bool loadMips)
{
OVRMeshData meshData = new OVRMeshData();
int totalVertexCount = 0;
var primitives = meshNode["primitives"];
int[] primitiveVertexCounts = new int[primitives.Count];
for (int i = 0; i < primitives.Count; i++)
{
var jsonPrimitive = primitives[i];
var jsonAttrbite = jsonPrimitive["attributes"]["POSITION"];
var jsonAccessor = m_jsonData["accessors"][jsonAttrbite.AsInt];
primitiveVertexCounts[i] = jsonAccessor["count"];
totalVertexCount += primitiveVertexCounts[i];
}
int[][] indicies = new int[primitives.Count][];
// Begin async processing of material and its texture
var jsonMaterial = primitives[0]["material"];
if (jsonMaterial != null)
{
var matData = ProcessMaterial(jsonMaterial.AsInt);
matData.texture = ProcessTexture(matData.textureId);
TranscodeTexture(ref matData.texture);
// reuse materials whenever possible
int matId = jsonMaterial.AsInt;
if (m_materials.TryGetValue(matId, out var cachedMat))
{
meshData.material = cachedMat;
}
else
{
Material mat = CreateUnityMaterial(matData, loadMips);
m_materials.Add(matId, mat);
meshData.material = mat;
}
}
OVRMeshAttributes attributes = new OVRMeshAttributes();
OVRMeshAttributes[] morphTargetAttributes = null;
int vertexOffset = 0;
for (int i = 0; i < primitives.Count; i++)
{
var jsonPrimitive = primitives[i];
int indicesAccessorId = jsonPrimitive["indices"].AsInt;
_dataAccessor.Seek(indicesAccessorId);
indicies[i] = _dataAccessor.ReadInt();
FlipTriangleIndices(ref indicies[i]);
attributes = ReadMeshAttributes(jsonPrimitive["attributes"], totalVertexCount, vertexOffset);
// morph targets
var jsonAttribute = jsonPrimitive["targets"];
if (jsonAttribute != null)
{
morphTargetAttributes = new OVRMeshAttributes[jsonAttribute.Count];
for (var ii = 0; ii < jsonAttribute.Count; ii++)
{
morphTargetAttributes[ii] = ReadMeshAttributes(jsonAttribute[ii], totalVertexCount, vertexOffset);
}
}
vertexOffset += primitiveVertexCounts[i];
}
Mesh mesh = new Mesh();
mesh.vertices = attributes.vertices;
mesh.normals = attributes.normals;
mesh.tangents = attributes.tangents;
mesh.colors = attributes.colors;
mesh.uv = attributes.texcoords;
mesh.boneWeights = attributes.boneWeights;
mesh.subMeshCount = primitives.Count;
int baseVertex = 0;
for (int i = 0; i < primitives.Count; i++)
{
mesh.SetIndices(indicies[i], MeshTopology.Triangles, i, false, baseVertex);
baseVertex += primitiveVertexCounts[i];
}
mesh.RecalculateBounds();
meshData.mesh = mesh;
meshData.morphTargets = morphTargetAttributes;
if (morphTargetAttributes != null)
{
meshData.baseAttributes = attributes;
}
return meshData;
}
private static void FlipTriangleIndices(ref int[] indices)
{
for (var i = 0; i < indices.Length; i += 3)
{
(indices[i], indices[i + 2]) = (indices[i + 2], indices[i]);
}
}
private OVRMeshAttributes ReadMeshAttributes(JSONNode jsonAttributes, int totalVertexCount, int vertexOffset)
{
OVRMeshAttributes results = new OVRMeshAttributes();
var jsonAttribute = jsonAttributes["POSITION"];
if (jsonAttribute != null)
{
_dataAccessor.Seek(jsonAttribute.AsInt);
results.vertices = _dataAccessor.ReadVector3(GLTFToUnitySpace);
}
jsonAttribute = jsonAttributes["NORMAL"];
if (jsonAttribute != null)
{
_dataAccessor.Seek(jsonAttribute.AsInt);
results.normals = _dataAccessor.ReadVector3(GLTFToUnitySpace);
}
jsonAttribute = jsonAttributes["TANGENT"];
if (jsonAttribute != null)
{
_dataAccessor.Seek(jsonAttribute.AsInt);
results.tangents = _dataAccessor.ReadVector4(GLTFToUnityTangent);
}
jsonAttribute = jsonAttributes["TEXCOORD_0"];
if (jsonAttribute != null)
{
_dataAccessor.Seek(jsonAttribute.AsInt);
results.texcoords = _dataAccessor.ReadVector2();
}
jsonAttribute = jsonAttributes["COLOR_0"];
if (jsonAttribute != null)
{
_dataAccessor.Seek(jsonAttribute.AsInt);
results.colors = _dataAccessor.ReadColor();
}
jsonAttribute = jsonAttributes["WEIGHTS_0"];
if (jsonAttribute != null)
{
results.boneWeights = new BoneWeight[totalVertexCount];
_dataAccessor.Seek(jsonAttribute.AsInt);
_dataAccessor.ReadWeights(ref results.boneWeights);
var jointAttribute = jsonAttributes["JOINTS_0"];
_dataAccessor.Seek(jointAttribute.AsInt);
_dataAccessor.ReadJoints(ref results.boneWeights);
}
return results;
}
private void ProcessSkin(JSONNode skinNode, SkinnedMeshRenderer renderer)
{
Matrix4x4[] inverseBindMatrices = null;
if (skinNode["inverseBindMatrices"] != null)
{
var inverseBindMatricesId = skinNode["inverseBindMatrices"].AsInt;
_dataAccessor.Seek(inverseBindMatricesId);
inverseBindMatrices = _dataAccessor.ReadMatrix4x4(GLTFToUnitySpace);
}
if (skinNode["skeleton"] != null)
{
var skeletonRootId = skinNode["skeleton"].AsInt;
renderer.rootBone = m_Nodes[skeletonRootId].transform;
}
Transform[] bones = null;
if (skinNode["joints"] != null)
{
var joints = skinNode["joints"].AsArray;
bones = new Transform[joints.Count];
for (int i = 0; i < joints.Count; i++)
{
bones[i] = m_Nodes[joints[i]].transform;
}
}
renderer.sharedMesh.bindposes = inverseBindMatrices;
renderer.bones = bones;
}
private OVRMaterialData ProcessMaterial(int matId)
{
OVRMaterialData matData = new OVRMaterialData();
var jsonMaterial = m_jsonData["materials"][matId];
var jsonAlphaMode = jsonMaterial["alphaMode"];
bool alphaBlendMode = jsonAlphaMode != null && jsonAlphaMode.Value == "BLEND";
var jsonPbrDetails = jsonMaterial["pbrMetallicRoughness"];
matData.baseColorFactor = Color.white; // GLTF Default
var jsonBaseColorFactor = jsonPbrDetails["baseColorFactor"];
if (jsonBaseColorFactor != null)
{
matData.baseColorFactor = new Color(jsonBaseColorFactor[0].AsFloat, jsonBaseColorFactor[1].AsFloat,
jsonBaseColorFactor[2].AsFloat, jsonBaseColorFactor[3].AsFloat);
}
var jsonBaseColor = jsonPbrDetails["baseColorTexture"];
if (jsonBaseColor != null)
{
int textureId = jsonBaseColor["index"].AsInt;
matData.textureId = textureId;
}
else
{
var jsonTextrure = jsonMaterial["emissiveTexture"];
if (jsonTextrure != null)
{
int textureId = jsonTextrure["index"].AsInt;
matData.textureId = textureId;
}
}
matData.shader = alphaBlendMode ? m_AlphaBlendShader : m_Shader;
return matData;
}
private OVRTextureData ProcessTexture(int textureId)
{
var jsonTexture = m_jsonData["textures"][textureId];
int imageSource = -1;
var jsonExtensions = jsonTexture["extensions"];
if (jsonExtensions != null)
{
var baisuExtension = jsonExtensions["KHR_texture_basisu"];
if (baisuExtension != null)
{
imageSource = baisuExtension["source"].AsInt;
}
}
else
{
imageSource = jsonTexture["source"].AsInt;
}
var jsonSource = m_jsonData["images"][imageSource];
OVRTextureData textureData = new OVRTextureData();
var jsonSourceUri = jsonSource["uri"].Value;
if (!String.IsNullOrEmpty(jsonSourceUri))
{
textureData.uri = jsonSourceUri;
return textureData;
}
// skip "sampler". not supported
var bufferViewId = jsonSource["bufferView"].AsInt;
switch (jsonSource["mimeType"].Value)
{
case "image/ktx2":
textureData.data = _dataAccessor.ReadBuffer(bufferViewId);
textureData.format = OVRTextureFormat.KTX2;
break;
case "image/png":
textureData.data = _dataAccessor.ReadBuffer(bufferViewId);
textureData.format = OVRTextureFormat.PNG;
break;
default:
Debug.LogWarning($"Unsupported image mimeType '{jsonSource["mimeType"].Value}'");
break;
}
return textureData;
}
private void TranscodeTexture(ref OVRTextureData textureData)
{
if (!String.IsNullOrEmpty(textureData.uri))
{
return;
}
if (textureData.format == OVRTextureFormat.KTX2)
{
OVRKtxTexture.Load(textureData.data, ref textureData);
}
else if (textureData.format == OVRTextureFormat.PNG)
{
// fall back to unity Texture2D.LoadImage, which will override dimensions & format.
}
else
{
Debug.LogWarning("Only KTX2 textures can be trascoded.");
}
}
private Material CreateUnityMaterial(OVRMaterialData matData, bool loadMips)
{
Material mat = new Material(matData.shader);
mat.color = matData.baseColorFactor;
if (loadMips && mat.HasProperty("_MainTexMMBias"))
mat.SetFloat("_MainTexMMBias", m_TextureMipmapBias);
Texture2D texture = null;
bool configureCreatedTexture = false;
if (m_textures.TryGetValue(matData.textureId, out texture))
{
mat.mainTexture = texture;
return mat;
}
if (matData.texture.format == OVRTextureFormat.KTX2)
{
texture = new Texture2D(matData.texture.width, matData.texture.height, matData.texture.transcodedFormat,
loadMips);
texture.LoadRawTextureData(matData.texture.data);
configureCreatedTexture = true;
}
else if (matData.texture.format == OVRTextureFormat.PNG)
{
texture = new Texture2D(2, 2, TextureFormat.RGBA32, loadMips);
texture.LoadImage(matData.texture.data);
configureCreatedTexture = true;
}
else if (!String.IsNullOrEmpty(matData.texture.uri))
{
texture = textureUriHandler?.Invoke(matData.texture.uri, mat);
}
if (!texture) return mat;
if (configureCreatedTexture)
{
ApplyTextureQuality(m_TextureQuality, ref texture);
texture.Apply(updateMipmaps: false, makeNoLongerReadable: true);
}
m_textures[matData.textureId] = texture;
mat.mainTexture = texture;
return mat;
}
private OVRGLTFInputNode GetInputNodeType(string name)
{
foreach (var item in InputNodeNameMap)
{
if (name.Contains(item.Key))
{
return item.Value;
}
}
return OVRGLTFInputNode.None;
}
private IEnumerator ProcessAnimations()
{
var animations = m_jsonData["animations"];
var animationIndex = 0;
var processingStart = Time.realtimeSinceStartup;
foreach (JSONNode animation in animations.AsArray)
{
//We don't need animation name at this moment
//string name = animation["name"].ToString();
var animationNodeLookup = new Dictionary();
var channels = animation["channels"].AsArray;
foreach (JSONNode channel in channels)
{
int nodeId = channel["target"]["node"].AsInt;
OVRGLTFInputNode inputNodeType = GetInputNodeType(m_Nodes[nodeId].name);
if (!animationNodeLookup.TryGetValue(nodeId, out var animationNode))
{
m_morphTargetHandlers.TryGetValue(nodeId, out var morphTargetHandler);
animationNode = animationNodeLookup[nodeId] = new OVRGLTFAnimatinonNode(
inputNodeType, m_Nodes[nodeId],
morphTargetHandler);
}
if (inputNodeType != OVRGLTFInputNode.None)
{
if (!m_InputAnimationNodes.ContainsKey(inputNodeType))
{
m_InputAnimationNodes[inputNodeType] = animationNode;
}
}
animationNode.AddChannel(channel, animation["samplers"], _dataAccessor);
}
m_AnimationLookup[animationIndex] = animationNodeLookup.Values.ToArray();
animationIndex++;
if (Time.realtimeSinceStartup - processingStart > LoadingMaxTimePerFrame)
{
processingStart = Time.realtimeSinceStartup;
yield return null;
}
}
}
}